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a b s t r a c t

A densely defined composition operator in an L2-space induced by a measurable transfor-
mation φ is shown to be quasinormal if and only if the Radon–Nikodym derivatives hφn

attached to powers φn of φ have the multiplicative property: hφn = hn
φ almost everywhere

for n = 0, 1, 2, . . . .
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Composition operators (in L2-spaces over σ -finite measure spaces) play an essential role in ergodic theory. They are
also interesting objects of operator theory. The foundations of the theory of bounded composition operators are well-
developed. In particular, the questions of their boundedness, normality, quasinormality, subnormality, seminormality
etc. were answered (see e.g., [21,19,26,12,15,16,9,11,22,6] for the general approach and [10,17,23,8,24] for special classes of
operators; see also the monograph [22]).

As opposed to the bounded case, the theory of unbounded composition operators is at a rather early stage of
development. There are few papers concerning this issue. Some basic facts about unbounded composition operators can
be found in [7,13,4]. In a recent paper [5], we gave the first ever criterion for subnormality of unbounded densely defined
composition operators, which states that if such an operator admits a measurable family of probability measures that
satisfy the consistency condition (see (CC)), then it is subnormal (cf. [5, Theorem 9]). The aforesaid criterion becomes a full
characterization of subnormality in the bounded case. Recall that the celebrated Lambert’s characterization of subnormality
of bounded composition operators (cf. [15]) is no longer true for unbounded ones (see [14, Theorem 4.3.3] and [4, Section
11]). It turns out that the consistency condition is strongly related to quasinormality.

Quasinormal operators, whichwere introduced by A. Brown in [3], form a class of operators which is properly larger than
that of normal operators, and properly smaller than that of subnormal operators (see [3, Theorem 1] and [25, Theorem 2]). It
was A. Lambert who noticed that if Cφ is a bounded quasinormal composition operator with a surjective symbol φ, then the
Radon–Nikodym derivatives hφn , n = 0, 1, 2, . . . , (see (2.1)) have the following multiplicative property (cf. [15, p. 752]):

hφn = hn
φ almost everywhere for n = 0, 1, 2, . . . .

The aim of this article is to show that the above completely characterizes quasinormal composition operators regardless
of whether they are bounded or not, and regardless of whether φ is surjective or not (cf. Theorem 3.1). The proof of
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this characterization depends on the fact that a quasinormal composition operator always admits a special measurable
family of probability measures which satisfy the consistency condition (CC). This leads to yet another characterization of
quasinormality (see condition (iii) of Theorem 3.1).

2. Preliminaries

We write C for the field of all complex numbers and denote by R+, Z+ and N the sets of nonnegative real numbers,
nonnegative integers and positive integers, respectively. Set R+ = R+ ∪ {∞}. Given a sequence {∆n}

∞

n=1 of sets and a set ∆

such that ∆n ⊆ ∆n+1 for every n ∈ N, and ∆ =


∞

n=1 ∆n, we write ∆n ↗ ∆ (as n → ∞). The characteristic function of a
set ∆ is denoted by χ∆ (it is clear from the context on which set the function χ∆ is defined).

The following lemma is a direct consequence of [18, Proposition I-6-1] and [1, Theorem 1.3.10]. It will be used in the
proof of Theorem 3.1.

Lemma 2.1. Let P be a semi-algebra of subsets of a set X and ρ1, ρ2 be finite measures1 defined on the σ -algebra generated by
P such that ρ1(∆) = ρ2(∆) for all ∆ ∈ P . Then ρ1 = ρ2.

Let A be a linear operator in a complex Hilbert space H . Denote by D(A) and A∗ the domain and the adjoint of A (in case it
exists). If A is closed and densely defined, then A has a (unique) polar decomposition A = U|A|, where U is a partial isometry
on H such that the kernels of U and A coincide and |A| is the square root of A∗A (cf. [2, Section 8.1]). A densely defined linear
operator A in H is said to be quasinormal if A is closed and U|A| ⊆ |A|U , where A = U|A| is the polar decomposition of A.
We refer the reader to [3] and [25] for basic information on bounded and unbounded quasinormal operators, respectively.

Throughout the paper (X, A , µ) will denote a σ -finite measure space. We shall abbreviate the expressions ‘‘almost
everywhere with respect to µ’’ and ‘‘for µ-almost every x’’ to ‘‘a.e. [µ]’’ and ‘‘for µ-a.e. x’’, respectively. As usual, L2(µ) =

L2(X, A , µ) denotes the Hilbert space of all square integrable complex functions on X with the standard inner product. Let
φ: X → X be an A -measurable transformation of X , i.e., φ−1(∆) ∈ A for all ∆ ∈ A . Denote by µ ◦ φ−1 the measure on A

given byµ◦φ−1(∆) = µ(φ−1(∆)) for ∆ ∈ A . We say that φ is nonsingular ifµ◦φ−1 is absolutely continuous with respect
to µ. If φ is a nonsingular transformation of X , then the map Cφ: L2(µ) ⊇ D(Cφ) → L2(µ) given by

D(Cφ) = {f ∈ L2(µ): f ◦ φ ∈ L2(µ)} and Cφ f = f ◦ φ for f ∈ D(Cφ),

is well-defined (and vice versa). Call such Cφ a composition operator. Note that every composition operator is closed (see
e.g., [4, Proposition 3.2]). If φ is nonsingular, then by the Radon–Nikodym theorem there exists a unique (up to sets of
measure zero) A -measurable function hφ: X → R+ such that

µ ◦ φ−1(∆) =


∆

hφdµ, ∆ ∈ A . (2.1)

It is well-known that Cφ is densely defined if and only if hφ < ∞ a.e. [µ] (cf. [7, Lemma 6.1]), and D(Cφ) = L2(µ) if and
only if hφ ∈ L∞(µ) (cf. [19, Theorem 1]). Given n ∈ N, we denote by φn the n-fold composition of φ with itself; φ0 is the
identity transformation of X . Note that if φ is nonsingular and n ∈ Z+, then φn is nonsingular and thus hφn makes sense.
Clearly hφ0 = 1 a.e. [µ].

Suppose thatφ: X → X is a nonsingular transformation such that hφ < ∞ a.e. [µ]. Then themeasureµ|φ−1(A ) is σ -finite
(cf. [4, Proposition 3.2]). Hence, by the Radon–Nikodym theorem, for every A -measurable function f : X → R+ there exists
a unique (up to sets of measure zero) φ−1(A )-measurable function E(f ): X → R+ such that

φ−1(∆)

f dµ =


φ−1(∆)

E(f )dµ, ∆ ∈ A . (2.2)

We call E(f ) the conditional expectation of f with respect to φ−1(A ) (see [4] for recent applications of the conditional
expectation in the theory of unbounded composition operators; see also [20] for the foundations of the theory of probabilistic
conditional expectation). It is well-known that

if 0 6 fn ↗ f and f , fn are A -measurable, then E(fn) ↗ E(f ), (2.3)
where gn ↗ g means that for µ-a.e. x ∈ X , the sequence {gn(x)}∞n=1 is monotonically increasing and convergent to g(x).

Now we state three results, each of which will be used in the proof of Theorem 3.1. The first one provides a necessary
and sufficient condition for the Radon–Nikodym derivatives hφn , n ∈ N, to have the following semigroup property.

Lemma 2.2 ([4, Lemma 9.1]). If φ is a nonsingular transformation of X such that hφ < ∞ a.e. [µ] and n ∈ N, then the following
two conditions are equivalent:
(i) hφn+1 = hφn · hφ a.e. [µ],
(ii) E(hφn) = hφn ◦ φ a.e. [µ|φ−1(A )].

The second result is a basic description of quasinormal composition operators.

1 All measures considered in this paper are assumed to be positive.
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Proposition 2.3 ([4, Proposition 8.1]). If φ: X → X is nonsingular and Cφ is densely defined, then Cφ is quasinormal if and only
if hφ = hφ ◦ φ a.e. [µ].

Before formulating the third result, we introduce the necessary terminology. We say that a map P: X × B(R+) → [0, 1],
whereB(R+) is the σ -algebra of all Borel subsets of R+, is an A -measurable family of probability measures if the set-function
P(x, ·) is a Borel probability measure on R+ for every x ∈ X , and the function P(·, σ ) is A -measurable for every σ ∈ B(R+).
Let φ be a nonsingular transformation of X such that hφ < ∞ a.e. [µ]. An A -measurable family P: X × B(R+) → [0, 1] of
probability measures is said to satisfy the consistency condition (cf. [5]) if

E(P(·, σ ))(x) =


σ
tP(φ(x), d t)
hφ(φ(x))

for µ-a.e. x ∈ X and every σ ∈ B(R+). (CC)

As shown in [5, Proposition 10], each quasinormal composition operator Cφ has an A -measurable family P: X × B(R+) →

[0, 1] of probability measures which satisfies the consistency condition (CC). In fact, such P can always be chosen to
be φ−1(A )-measurable. As already mentioned, the consistency condition (CC) leads to a criterion for subnormality of
unbounded composition operators (cf. [5, Theorem 9]).

The third result relatesmoments of anA -measurable family P of probabilitymeasures satisfying (CC) to Radon–Nikodym
derivatives hφn , n ∈ Z+.

Theorem 2.4 ([5, Theorem 17]). Let φ be a nonsingular transformation of X such that 0 < hφ < ∞ a.e. [µ], and
P: X × B(R+) → [0, 1] be an A -measurable family of probability measures which satisfies (CC). Then

hφn(x) =


R+

tnP(x, d t) for µ-a.e. x ∈ X and for every n ∈ Z+.

3. The characterization

In this section we provide the main characterization of quasinormal composition operators (see (v) below). We begin by
noting that if Cφ is quasinormal, then the A -measurable family P: X × B(R+) → [0, 1] of probability measures given by
P(x, σ ) = χσ (hφ(x)) for x ∈ X and σ ∈ B(R+) satisfies the consistency condition (CC) (of course, under the assumption
that hφ is finite). The consistency condition written for this particular P appears in (iii) below. It is an essential component
of the proof of the characterization.

From now on, we adhere to the convention ∞
0

= 1.

Theorem 3.1. Let φ be a nonsingular transformation of X such that Cφ is densely defined. Then the following six conditions are
equivalent2:
(i) Cφ is quasinormal,
(ii) χσ ◦ hφ ◦ φ · χσ ◦ hφ = χσ ◦ hφ ◦ φ a.e. [µ] for every σ ∈ B(R+),
(iii) E(χσ ◦ hφ) = χσ ◦ hφ ◦ φ a.e. [µ] for every σ ∈ B(R+),
(iv) E(f ◦ hφ) = f ◦ hφ ◦ φ a.e. [µ] for every Borel function f :R+ → R+,
(v) hφn = hn

φ a.e. [µ] for every n ∈ Z+,
(vi) E(hφ) = hφ ◦ φ a.e. [µ] and E(hφn) = E(hφ)n a.e. [µ] for every n ∈ Z+.

Proof. It follows from [7, Lemma 6.1] that hφ < ∞ a.e. [µ].
(i) ⇒ (iii) Since, by Proposition 2.3, hφ = hφ ◦ φ a.e. [µ], we deduce that χσ ◦ hφ = χσ ◦ hφ ◦ φ a.e. [µ] for every

σ ∈ B(R+), which implies (iii).
(iii) ⇒ (iv) Since each Borel function f :R+ → R+ is a pointwise limit of an increasing sequence of nonnegative Borel

simple functions, one can show that (iii) implies (iv) by applying the Lebesgue monotone convergence theorem as well as
the additivity and the monotone continuity of the conditional expectation (see (2.3)).

(iv) ⇒ (iii) Obvious.
(iii) ⇒ (ii) In view of (iii) and (2.2), we have

φ−1(∆)

χσ ◦ hφdµ =


φ−1(∆)

χσ ◦ hφ ◦ φdµ, ∆ ∈ A . (3.1)

By our assumptions on themeasureµ, there exists a sequence {Xn}
∞

n=1 ⊆ A such that {µ(Xn)}
∞

n=1 ⊆ R+, Xn ↗ X as n → ∞

and

hφ 6 k a.e. [µ] on Xk for every k ∈ N. (3.2)

2 Since hφ < ∞ a.e. [µ], the expressions f ◦ hφ and f ◦ hφ ◦ φ appearing in (iv) are defined a.e. [µ]. To overcome this disadvantage, one can simply set
f (∞) = 0.
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Substituting ∆ = h−1
φ (σ ) ∩ Xn into (3.1), we see that the following equality holds for all n ∈ N and σ ∈ B(R+),

µ(φ−1(Xn) ∩ (hφ ◦ φ)−1(σ ) ∩ h−1
φ (σ )) = µ(φ−1(Xn) ∩ (hφ ◦ φ)−1(σ )) < ∞.

Hence for all n ∈ N and σ ∈ B(R+),

χφ−1(Xn) · χ(hφ◦φ)−1(σ ) · χh−1
φ (σ )

= χφ−1(Xn) · χ(hφ◦φ)−1(σ ) a.e. [µ].

Since φ−1(Xn) ↗ X as n → ∞, we get (ii).
(ii) ⇒ (i) Substituting R+ \ σ into (ii) in place of σ , we get

χσ ◦ hφ = χσ ◦ hφ ◦ φ · χσ ◦ hφ
(ii)
= χσ ◦ hφ ◦ φ a.e. [µ] for every σ ∈ B(R+).

Applying the standard measure-theoretic argument, we deduce that f ◦ hφ = f ◦ hφ ◦ φ a.e. [µ] for every Borel function
f :R+ → R+. Substituting f (t) = t, t ∈ R+, we see that hφ = hφ ◦ φ a.e. [µ]. By Proposition 2.3, this yields (i).

Summarizing, we have proved that the conditions (i)–(iv) are equivalent.
(v) ⇒ (vi) Since hφ2 = h2

φ a.e. [µ], Lemma 2.2 yields E(hφ) = hφ ◦ φ a.e. [µ]. Clearly, hφn+1 = hφn · hφ a.e. [µ] for n ∈ Z+

and thus, by Lemma 2.2 again, we have

E(hn
φ) = E(hφn) = hφn ◦ φ = (hφ ◦ φ)n = E(hφ)n a.e. [µ] for every n ∈ Z+.

(vi) ⇒ (v) The equality hφn = hn
φ a.e. [µ] holds for n = 0. Suppose it is valid for a fixed n ∈ Z+. Then E(hφn) = hn

φ ◦ φ =

hφn ◦ φ a.e. [µ] which by Lemma 2.2 gives

hφn+1 = hφn · hφ = hn
φ · hφ = hn+1

φ a.e. [µ].

(i) ⇒ (v) Without loss of generality, we may assume that hφ(x) < ∞ for all x ∈ X . Note that hφ ◦φ > 0 a.e. [µ] (because
φ−1(Nφ) = {x ∈ X: hφ(φ(x)) = 0} and µ(φ−1(Nφ)) =


X χNφ

◦ φdµ =

X χNφ

hφdµ = 0 with Nφ := {x ∈ X: hφ(x) = 0}).
Hence, by Proposition 2.3, we have hφ = hφ ◦ φ > 0 a.e. [µ]. Let P: X × B(R+) → [0, 1] be the φ−1(A )-measurable family
of probability measures defined by

P(x, σ ) = χσ (hφ(φ(x))), x ∈ X, σ ∈ B(R+). (3.3)

Then P satisfies (CC) (see e.g., the proof of [5, Proposition 10]). Hence, by Theorem 2.4, we see that for every n ∈ Z+,

hφn(x) =


R+

tnP(x, d t)
(3.3)
= (hφ ◦ φ)n(x) = hn

φ(x) for µ-a.e. x ∈ X .

(v) ⇒ (iii) Let {Xn}
∞

n=1 be as in the proof of (iii) ⇒ (ii). By (3.2) and the nonsingularity of φ, we have

hφ ◦ φ 6 k a.e. [µ] on φ−1(Xk) for every k ∈ N. (3.4)

Now we show that

hφ 6 k a.e. [µ] on φ−1(Xk) for every k ∈ N. (3.5)

For this, note that applying (v) we get
φ−1(∆)

hn
φdµ = µ((φn)−1(φ−1(∆))) =


∆

hn+1
φ dµ, ∆ ∈ A , n ∈ N. (3.6)

Substituting ∆ = Xk into (3.6) and using (3.2), we obtain
φ−1(Xk)

hn
φdµ

1/n

6 (kn+1µ(Xk))
1/n, k, n ∈ N. (3.7)

By [1, p. 95, Problem 9], this implies (3.5).
It follows from (vi) that E(hφn) = hn

φ ◦ φ a.e. [µ] for all n ∈ Z+. Hence, by (2.2),
φ−1(∆)

hφndµ =


φ−1(∆)

hn
φ ◦ φdµ (3.8)

for all ∆ ∈ A and n ∈ Z+. Fix k ∈ N and ∆ ∈ A such that ∆ ⊆ Xk. In view of (3.4) and (3.5), there exists E ∈ A such that
E ⊆ φ−1(∆), µ(φ−1(∆) \ E) = 0 and

hφ(x), hφ(φ(x)) ∈ [0, k] for every x ∈ E. (3.9)
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By (3.7), both sides of (3.8) are finite for every n ∈ Z+. Therefore, we have
E
p ◦ hφdµ =


E
p ◦ hφ ◦ φdµ, p ∈ C[z], (3.10)

whereC[z] is the ring of all complex polynomials in variable z. Let f : [0, k] → C be a continuous function. By theWeierstrass
theorem, there exists a sequence {pn}∞n=1 ⊆ C[z] which is convergent uniformly to f on [0, k]. Then, by (3.9), both suprema
supE |f ◦ hφ ◦ φ − pn ◦ hφ ◦ φ| and supE |f ◦ hφ − pn ◦ hφ | are less than or equal to sup[0,k] |f − pn| for every n ∈ N. Since,
by (3.2), µ(E) 6 µ(φ−1(Xk)) < ∞, we deduce that


E pn ◦ hφ ◦ φdµ tends to


E f ◦ hφ ◦ φdµ as n → ∞, and


E pn ◦ hφdµ

tends to

E f ◦ hφdµ as n → ∞. Hence, by (3.10), for every continuous function f : [0, k] → C,

E
f ◦ hφdµ =


E
f ◦ hφ ◦ φdµ. (3.11)

Take an interval J = [a, b) with a, b ∈ R+. Then there exists a sequence of continuous functions fn: [0, k] → [0, 1], n ∈ N,
which converges to χJ∩[0,k] pointwise. Therefore, by (3.9), fn ◦ hφ ◦φ tends to χJ∩[0,k] ◦ hφ ◦φ pointwise on E as n → ∞, and
fn ◦ hφ tends to χJ∩[0,k] ◦ hφ pointwise on E as n → ∞. This combined with (3.11) and the Lebesgue dominated convergence
theorem shows that the equality

φ−1(∆)

χσ ◦ hφdµ =


φ−1(∆)

χσ ◦ hφ ◦ φdµ (3.12)

holds for σ = J ∩ [0, k]. Applying Lemma 2.1 to the Borel measures on [0, k] (with respect to σ ) defined by the left-hand
and the right-hand sides of (3.12), and to the semi-algebra P = {[a, b) ∩ [0, k]: a, b ∈ R+}, we see that (3.12) holds for
every Borel set σ ⊆ [0, k].

In view of the above, if ∆ ∈ A and σ ∈ B(R+), then by the Lebesgue monotone convergence theorem and the fact that
Xk ↗ X as k → ∞, we have

φ−1(∆)

χσ ◦ hφdµ = lim
k→∞


φ−1(∆∩Xk)

χσ∩[0,k] ◦ hφdµ

= lim
k→∞


φ−1(∆∩Xk)

χσ∩[0,k] ◦ hφ ◦ φdµ =


φ−1(∆)

χσ ◦ hφ ◦ φdµ,

which together with (2.2) implies (iii). This completes the proof. �

Remark 3.2. Regarding Theorem 3.1, it is worth pointing out that it may happen that the equalities hφn = hn
φ a.e. [µ],

n ∈ Z+, are satisfied though the equality hφ = hφ ◦ φ a.e. [µ] is not. This shows that the assumption D(Cφ) = L2(µ) in
Theorem 3.1 is essential. To demonstrate this, set X = Z+ and A = 2X . Let µ be the counting measure on A . Define the
nonsingular transformation φ of X by φ(x) = 0 for x ∈ X . It is easily seen that hφn(x) = 0 if x ∈ X \ {0} and hφn(0) = ∞

for every n ∈ N. This implies that hφn(x) = hφ(x)n for all x ∈ X and n ∈ Z+. However, hφ ◦ φ(x) = ∞ for every x ∈ X , and
hφ(x) = 0 for every x ∈ X \ {0}.
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